COR-TEN: The origins of weathering steel
Weathering steels were first developed by US Steel Corporation back in the 1930s. They were looking for a steel alloy for their ore carrying hopper carts they would use to transfer the iron ore and coal to the furnace. They needed a stronger, more durable steel alloy that had exceptional hardness and did not need to be painted. It was only later they realized this alloy had interesting corrosion resistant traits that could be marketed in other industries, so it trademarked the name COR-TEN® for this corrosion-resistant steel alloy. COR stands for corrosion resistance and TEN stands for tensile strength. (Today, while the terms Corten and COR-TEN are used interchangeably, COR-TEN® is a trademarked product of US Steel.)
The steel was not introduced as an architectural metal, however, until the 1950s. In 1964, the John Deere Headquarters, in Moline, Illinois, opened and was one of the first major architectural structures to be clad in weathering steel. Eero Saarinen designed the John Deere complex but, unfortunately, he died before seeing it completed.
William Hewitt, then president of the John Deere company, said:
“The seven buildings should be thoroughly modern in concept but should not give the effect of being especially sophisticated or glossy. Instead, they should be more ‘down to earth’ and rugged.
Richard Serra Sculpture |
![]() |
Saarinen chose this special weathering steel, Corten, to age and provide the earth tones and the “down to earth” feel his client desired. He knew the metal would age gracefully and create a deep, natural tone as the thickened oxide formed. The deep rich surface oxide exhibits a natural brownish-red tone that is both durable and stable.
Many artists have also incorporated weathering steel into their work, the most well-known being Richard Serra. Serra has used weathering steel plates on numerous massive sculptures found around the world.
The great minimalist artist Donald Judd also used weathering steel in his works. Judd would often preweather large plates and then allow them to continue to oxidize outdoors in Marfa, Texas. He also created smaller weathering steel wall units where he worked the surface oxide to create a fine velvet-like appearance.
Easy to work with, weldable, and now with appealing surface finishing, weathering steel is giving new value and inspiration to the designer and artist.
What is weathering steel?
In the context of art and architecture, steels are rarely used uncoated because of their tendency to absorb moisture and develop the porous and friable oxide commonly called rust. Coatings can consist of a sacrificial zinc, as in the galvanizing process where the steel is electroplated
or immersed into a molten bath of zinc. Other metal coatings in common use are the aluminum–zinc coatings and Galfan™, a combination of zinc and rare earth metals. These are all considered sacrificial coatings of other metals that involve the protection of the base steel by offering up their electrons as well as acting as barrier coatings.
In addition to the preweathering rust effects, there are also treatments that induce a blue or black protective coating on the steel, such as Oscura blackened steel. These involve the integration of metal salts onto the surface of the steel. There is some diffusion of the iron into these coatings to create the dark, sulfide, phosphate or selenide salt. Not as protective as the sacrificial coating of zinc in the galvanized process, these coatings are often applied to smaller features, pieces and areas.
Weathering steel, with its copper-bearing properties, forms its own distinctive oxide barrier over the surface. This barrier grows outward and inward from the surface. Unlike common rust, the oxide formed on weathering steel is a thick, impervious ferro-oxyhydroxide that will afford the base metal extensive resistance to corrosion. Below are some of the most common coatings applied when necessary for internal and external design, in art and architecture.
Surface Coatings on Steel Used in Art and Architecture
High-strength, low-alloy weathering steels are designed to develop a special thick iron oxide capable of slowing down the effects of atmospheric corrosion much like the green patina that develops on copper surfaces exposed to the atmosphere. This oxide grows on exposure to moisture and air.
As with all uncoated steels, the oxide develops when the surface is exposed to moisture and oxygen. For the weathering steels, however, the difference lies in the nature of the oxide that develops over time.
The oxide that gives weathering steel its protective ability is ferric oxyhydroxide, FeO(OH) an oxygenated version of ferric oxide — essentially, a mixture of oxides and hydroxide. This attractive, orange to rich purple brown oxide acts as a protective barrier to the base metal. When correctly formed, this tough layer of oxide develops into a surface that resists atmospheric degradation in outdoor environments. Once the oxide develops correctly, further changes are very slow in most environmental exposures.
Source: Zahner
The News 01/08/2025
Hinoki wood (Japanese cypress – Chamaecyparis obtusa) is a precious type of wood native to Japan, known for its light color, fine grain, and pleasant natural aroma. Thanks to its antibacterial, moisture-resistant, and heat-resistant properties, Hinoki has long been used in traditional architecture, such as temples, onsen bathtubs, and especially saunas. With its calming fragrance and exceptional durability, Hinoki is increasingly favored in modern bathroom design, offering a luxurious and serene experience for users.
The News 22/07/2025
In the context of rapid urbanization, localized flooding and water pollution are becoming increasingly severe, particularly due to stormwater runoff on impermeable surfaces such as concrete and asphalt. Permeable pavers have emerged as an advanced, environmentally friendly construction material designed to reduce stormwater runoff and filter pollutants at the source. Not only do these pavers allow for rapid water drainage, but they also act as a primary filter that traps dust, heavy metals, and vehicle-related contaminants, thus improving urban environmental quality. This material is a part of the new wave of sustainable construction trends, widely adopted in developed countries but still relatively new in Vietnam.
The News 11/07/2025
In the era of digital technology and the explosive growth of the Internet of Things (IoT), architecture is no longer merely the art of construction—it has evolved into an intelligent ecosystem, where buildings can sense, analyze, and respond to their environment. One of the most advanced solutions driving breakthroughs in modern construction is the sensor-embedded brick with integrated circuits. This is no longer a passive traditional building material, but rather a “sensing brick,” equipped with internal sensors and processing microchips capable of measuring temperature, humidity, vibration, and impact forces, and wirelessly transmitting data in real-time. The application of this technology in construction not only enhances the ability to monitor structural safety but also unlocks the potential for smart, sustainable, and energy-efficient buildings. This topic aims to clarify the role of integrating sensors and microchips into building bricks, the manufacturing process, and notable practical applications.
The News 03/07/2025
The rapid growth of the construction industry has significantly contributed to global resource consumption and greenhouse gas emissions. In this context, the search for environmentally friendly alternative materials has become a critical necessity. One promising direction is the use of mycelium bio bricks, a type of bio composite material that can self grow and bind organic substrates.
The News 30/06/2025
3D concrete tiles are a modern type of building and decorative material, made from concrete or geopolymer, with a raised three-dimensional surface featuring geometric, natural, or artistic patterns. Thanks to their strong visual effects, 3D concrete tiles not only provide high aesthetic value but also help improve sound insulation, thermal resistance, and waterproofing. With advantages in durability, ease of construction, and environmental friendliness, especially when combined with recycled materials such as ground brick waste, 3D concrete tiles are becoming an ideal material solution for both interior and exterior modern spaces.
The News 25/06/2025
Amid rapid urbanization and rising aesthetic demands in modern construction, smart and sustainable materials are gradually replacing traditional solutions. Among them, luminescent concrete has emerged as an innovative trend that combines lighting functionality with the mechanical durability of conventional concrete. Not only does it offer a distinctive visual appeal, but it also enhances safety, conserves energy, and improves spatial efficiency in low-light environments. With vast potential for applications in transportation infrastructure, landscape architecture, and smart urban design, this material is paving the way for new directions in the construction industry during the era of green technology.